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Abstract
We consider the dipole transitions and the linear and quadratic Stark effects in
the MICZ-Kepler system interpreted as a charge-dyon system. We show that
while the linear Stark effect in the ground state is proportional to the azimuth
quantum number (and to the sign of the monopole number), the quadratic
Stark effect in the ground state is independent of the signs of the azimuth and
monopole numbers.

PACS numbers: 03.65.−w, 14.80.Hv

1. Introduction

The integrable MICZ-Kepler system suggested independently by Zwanziger [1] and by
McIntosh and Cisneros [2] is defined by the following Hamiltonian5

HMIC = π2

2
+

s2

2r2
− 1

r
, where [πi, πj ] = −s

εijkxk

r3
, [πi, xj ] = −ıδij .

(1.1)

Its distinguished peculiarity is the closed similarity with the Coulomb problem, which insists
on the existence of a hidden symmetry given by the angular momentum operator L and by the
analogue of the Runge–Lenz vector, which are defined by the expressions

L = r × π + s
r
r
, I = 1

2
[π × L − L × π] +

r
r
. (1.2)

This hidden symmetry exists due to the existence of the specific centrifugal term s2/2r2 in the
Hamiltonian. The necessity of incorporation of this term, in the Hamiltonian, describes the

5 In this paper we use the Coulomb units, where the mass, length and time are measured in µ, h̄2/µγ , h̄3/µγ 2

respectively [4]. (Here µ is the mass of the particle, and γ is a Coulomb coupling constant. We restrict ourselves to
positive γ corresponding to the attractive MC-Kepler system.) Particularly, the energy unit is µγ 2/h̄2.

1751-8113/07/225973+08$30.00 © 2007 IOP Publishing Ltd Printed in the UK 5973

http://dx.doi.org/10.1088/1751-8113/40/22/014
http://stacks.iop.org/JPhysA/40/5973


5974 L Mardoyan et al

motion of the electrically charged non-relativistic particle in the field of Dyrac-dyon (particle
that carrieds both electric and magnetic charges). However, it was realized decades ago that
for the consistent consideration of the particle–monopole systems, this term should be taken
into account. Probably, first time it was pointed out by Zwanziger [1] and Schwinger [3].
Note also that this term appears, when we try to obtain the MICZ-Kepler system, similar to
the Coulomb system, from a four-dimensional oscillator [5]. Let us mention, in this respect,
that the Schrödinger equation for the MICZ-Kepler system is equivalent to the Schrödinger
equation for the system of two well-separated BPS monopoles/dyons (which possess the
Coulomb symmetry) [6]. The actual observable difference of the MICZ-Kepler system from
the Coulomb problem insists on the change of the range of the total angular momentum from
l = 0, 1, . . . to l = |s|, |s| + 1, . . . (where the monopole number s takes (half-)integer values),
which leads to the (2|s| + 1)-fold degeneracy of the ground state with respect to the azimuth
quantum number. On the other hand, the lifting of the low bound of the total angular momentum
(and degeneracy of the ground state) is the general feature of the quantum-mechanical systems
with monopoles. Another general feature of the quantum-mechanical systems with monopoles
is the change of the selection rules for the dipole transitions. Namely, while in conventional
quantum-mechanical (spherically symmetric) models the selection rules are given by the
expressions m′ = m, l′ = l − 1; m′ = m ± 1, l′ = l ± 1;m′ = m ± 1, l′ = l ∓ 1; in
the charge-dyon system other transitions are also possible (see [7] and the references in [8]):
m′ = m, l′ = l m′ = m±1, l′ = l. The specific effect of the choice of the Coulomb potential
is hidden symmetry, essentially simplifying the analyses of the system. For example, it makes
possible the separation of variables in a few coordinate systems [9].

It seems that the MICZ-Kepler system could be useful for the modification of the existing
models of quantum dots related to the Coulomb problem, providing them with a degenerate
ground state. Moreover, the search for the MICZ-Kepler system (as well as for the other
quantum-mechanical systems with monopoles) in the condensed matter seems to be even
more motivated than in high-energy physics and quantum field theory. Indeed, monopoles
(and dyons) remain to be hypothetic particles, though their existence is admitted in modern
field theoretical models. While in the condensed matter the particle–monopole configuration
could be viewed as a short-distance approximation of the behaviour of a charged particle in
the vicinity of the pole of magnet. Note that some attempt to incorporate the Dirac monopole
into the quantum dot models has been made in [10], giving the satisfactory interpretation of
the experimental data; while the MIC-Kepler (charge-dyon) system in the spherical quantum
well has been considered in the paper [11]. Naively, one could expect that nth energy level of
the MIC-Kepler system should be identical with the (n + |s|)th energy level of the Coulomb
problem. However, the linear Stark effect in the MICZ-Kepler system (interpreted as a
charge-dyon system) completely removes the degeneracy of the energy levels in the charge-
dyon system on the azimuth quantum number, in contrast with a hydrogen atom [12]. Thus,
one can believe that other observable differences between the MICZ-Kepler and Coulomb
systems could also arise due to interaction with external fields.

In this paper, we study other possible differences in the behaviour of the MICZ-Kepler
system and Coulomb system, which could affect the condensed matter applications.

At first, we consider, for the completeness, the dipole transitions in the MICZ-Kepler
system generated by the planar monochromatic electromagnetic wave. Their difference from
the dipole transitions in the so-called dyogen atom (described by the MICZ-Kepler Hamiltonian
minus s2/2r2 term) [7] is in the value of the unessential constant.

Then we consider the Stark effect in the charge-dyon system: in contrast with dipole
transitions, the specific choice of potential is important in this consideration. Particularly,
since the MICZ-Kepler system admits separation of variables in parabolic coordinates, both
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linear and quadratic Stark effects could be calculated without any efforts. In addition to the
linear Stark effect calculated in [12], we calculate the quadratic one, and specify them for the
ground state of the MICZ-Kepler system. We find that the ground state possesses both linear
and quadratic Stark effects. The ground energy correction due to linear Stark is proportional
to the azimuth quantum number and to the sign of the monopole number, while the quadratic
Stark effect is independent of the signs of the monopole and azimuth quantum numbers.

2. Dipole transitions

Let us consider the dipole transitions in the MICZ-Kepler system interacting with a planar
monochromatic electromagnetic wave, which are completely similar to those in the ‘dyogen
atom’ [7].

The wave is defined by the vector potential:

A = A0u cos(ωt − kr), ∇ · A = 0 (2.1)

where u is the polarization vector, uk = 0. Assuming that the magnitude of this field is small
enough, we could represent the interaction energy as follows:

H = (π − A)2

2
+

s2

2r2
− 1

r
≈ HMIC − Aπ, (2.2)

where HMIC is defined by (1.1).
For the calculation of the matrix element of dipole transitions we shall use the

wavefunctions of the non-perturbed MICZ-Kepler system in the spherical coordinates, which
are the solutions of the following spectral problem:

HMICψ = E(0)ψ, L2ψ = l(l + 1)ψ, L3ψ = mψ. (2.3)

These wavefunctions are given by the expressions:

ψnlm(r; s) = cnlr
l e−r/nF

(
l − n + 1, 2l + 2,

2r

n

)
dl

ms(θ) eimϕ. (2.4)

Here dl
ms is the Wigner d-function, the energy spectrum is defined by the expression

E0 = −1/2n2, and the quantum numbers n, l,m have the following ranges of definition:

n = l + 1, l + 2, . . . , l = |s|, |s + 1|, . . . , m = −l,−l + 1, . . . , l − 1, l. (2.5)

The normalization constant cnl is given by the expression (see, e.g., [9])

cnl = 2l

nl+2(2l + 1)!

√
(2l + 1)(n + l)!

π(n − l − 1)!
. (2.6)

The matrix element for dipole transitions in the long wave approximation looks as follows
[13]

Mn,l,m|n′,l′,m′ = −
[

2πN

V ω

]1/2

u〈n, l,m|π|n′, l′,m′〉, (2.7)

where N is the density of photons in the volume V .
Taking into account the commutation relation [r,HMIC] = ıπ, one can represent the

probability of transition from the state (n, l,m) to the state (n′, l′,m′) in the unit time in the
following form:

dwn,l,m|n′,l′,m′ = Nω3

2π
|udn,l,m|n′,l′,m′ |2 d	,

where dn,l,m|n′,l′,m′ = (En′,l′,m′ − En,l,m)〈n, l,m|r|n′, l′,m′〉. (2.8)



5976 L Mardoyan et al

A straightforward calculation yields the result

udn,l,m|n′,l′,m′ = I (n, l|n′, l′)
[
ux + ıuy

2

(
l + 1

2(2l + 1)

√
(l + m)(l2 − s2)δm−1|m′δl−1|l′

+

√
(l + 1)(l − m + 1)(l − m + 2)((l + 1)2 − s2)

2
√

l + 2(l + 1)(2l + 2)
δm−1|m′δl+1|l′

+ s

√
(l − m + 1)(l + m)

l(l + 1)
δm−1|m′δl|l′

)

− ux − ıuy

2

(
l + 2

2(2l + 3)

√
(l + m + 2)((l + 1)2 − s2)δm+1|m′δl+1|l′

−
√

l

l + 1

√
(l − m − 1)(l − m)(l2 − s2)

l(2l − 1)
δm+1|m′δl−1|l′

+ s

√
(l + m + 1)(l − m)

l(l + 1)
δm+1|m′δl|l′

)

+ uz

(√
(l + 1)(l2 − m2)(l2 − s2)√

ll(2l + 1)
δl−1|l′

+

√
(l + 1)((l + 1)2 − m2)((l + 1)2 − s2)√

l + 2(l + 1)(2l + 1)
δl+1|l′ + s

m

l(l + 1)
δl|l′

)
δm|m′

]
(2.9)

where

I (n, l|n′, l′) =
∫ ∞

0
cnlc

∗
n′l′r

l+l′ e−( r

n′ + r
n
)F

(
l − n + 1, 2l + 2,

2r

n

)

×F

(
l′ − n′ + 1, 2l′ + 2,

2r

n

)
r3 dr, (2.10)

and cnm is defined by (2.6).
It is seen that the presence of Dirac monopole changes the selection rules of the system.

Namely, in the absence of monopole one has

uz 
= 0 : m = m′, l′ = l − 1 (2.11)

|ux + ıuy | 
= 0 : m′ = m ± 1, l′ = l ± 1; m′ = m ± 1, l′ = l ∓ 1. (2.12)

In the presence of Dirac monopole, when s 
= 0 other transitions are also possible [7, 14]:

uz 
= 0 : m = m′, l′ = l (2.13)
|ux + ıuy | 
= 0 : m′ = m ± 1, l′ = l. (2.14)

So, the presence of monopole makes the selection rules less rigorous. Namely, besides (2.12),
the transitions preserving the orbital quantum number l are also allowed, (2.14). When the
electromagnetic wave has transversal polarization (uz = 0), the transitions preserving the
orbital quantum number, and changing the azimuth quantum number, become possible. When
longitudal mode in the electromagnetic wave appears (uz 
= 0), the transitions, preserving
both orbital and azimuth quantum numbers, are also admissible.

3. The Stark effect

The Hamiltonian of the MICZ-Kepler system (interpreted as a charge-dyon system) in the
external constant uniform electric field is of the form

HStark = HMIC + Er. (3.1)
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Similar to the Coulomb system in the constant uniform magnetic field, this system possesses
two constants of motion:

J ≡ nEL, I = nEI +
|E|
2

(nE × r)2, (3.2)

where nE = E/|E| is the unit vector directed along the external electric field, and L and I
are given by expressions (1.2). While the origin of the first constant of motion is obvious,
the validity of the second expression can be checked by the straightforward calculation. Due
to the existence of the second constant of motion, the charge-dyon system interacting with
the external electric field admits the separation of variables in parabolic coordinates. As a
consequence, similar to the hydrogen atom, one can calculate the quadratic Stark effect in the
charge-dyon system [4]. We assume that the electric field E is directed along the positive
x3-semiaxes, and the force acting on the electron is directed along the negative x3-semiaxes.
We represent the momentum operator π as follows:

π = −ı∇ − sAD, AD = 1

r(r − x3)
(x2,−x1, 0) (3.3)

where AD is the potential of the Dirac monopole with the singularity line directed along the
positive semiaxis x3. Choosing the parabolic coordinates ξ, η ∈ [0,∞), ϕ ∈ [0, 2π) defined
by the formulae

x1 + ix2 =
√

ξη eiϕ, x3 = 1
2 (ξ − η). (3.4)

and making the substitution

ψ(ξ, η, ϕ) = �1(ξ)�2(η)
eimϕ

√
2π

. (3.5)

we separate the variables in the Schrödinger equation for the Hamiltonian (3.1), and arrive at
the system [9]

d

dξ

(
ξ

d�1

dξ

)
+

[
E
2

ξ − |E|
4

ξ 2 − (m + s)2

4ξ

]
�1 = −β1�1,

(3.6)
d

dη

(
η

d�2

dη

)
+

[
E
2

η +
|E|
4

η2 − (m − s)2

4η

]
�2 = −β2�2, β1 + β2 = 1.

It is seen that β1 − β2 is the eigenvalue of the operator I in (3.2).
For s = 0 these equations coincide with the similar equations for the hydrogen atom in

the parabolic coordinates [4]. Hence, similar to that, we can consider the energy E as a fixed
parameter, and β1,2 as the eigenvalues of the corresponding operators. These quantities are
defined after solving the above equations, as the functions of E and E. Then, due to the relation
β1 +β2 = 1, the energy E becomes a function of the external field E. Let us consider the terms
containing the electric field |E| as a perturbation. Thus, in zero approximation (E = 0) we get

�1 = √
κ�n1,m+s(

√
κξ), �1 = √

κ�n2,m−s(
√

κη). (3.7)

Here

�pq(x) = 1

|q|!

√
(p + |q|)!

p!
e−x/2(x)|q|/2

1F1(−p; |q| + 1; x). (3.8)

and n1, n2 are non-negative integers

β
(0)
1 =

(
n1 +

|m1| + 1

2

)
κ, β0

2 =
(

n2 +
|m2| + 1

2

)
κ, (3.9)
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and

κ = √−2E, ma = m − (−1)as a = 1, 2. (3.10)

It is seen from the above expressions that the calculation of the first- and second-order
corrections to β

(0)
1,2 will be completely similar to those in the Coulomb problem [4], if one

replaces |m| → |m + s| in β1,�1, and |m| → |m − s| in β2,�2. These substitutions yield the
following expressions:

β(1)
a = − (−1)a|E|

4κ2

(
6n2

a + 6na|ma| + m2
a + 6na + 3|ma| + 2

)
(3.11)

β(2)
a = − |E|2

16κ5
(|ma| + 2na + 1)

(
4m2

a + 17
(
2|ma|na + 2n2

a + |ma| + 2na

)
+ 18

)
. (3.12)

Then we get

β0
1 + β

(0)
2 = κn, β

(1)
1 + β

(1)
2 = 3|E|

2κ2
A, β

(2)
1 + β

(2)
2 = − |E|2

16κ5
B, (3.13)

where we introduce the notations

A ≡ nn− − ms

3
, B ≡ 17n3 − 3nn2

− + 54An− + 19n − 9n(m2 + s2), (3.14)

and the quantum numbers

n = n1 + n2 +
|m + s| + |m − s|

2
+ 1, n− ≡ n1 − n2 +

|m + s| − |m − s|
2

. (3.15)

Taking into account that β1 + β2 = 1, we get

κn +
3|E|A
2κ2

− |E|2B
16κ5

= 1. (3.16)

Iteratively solving this equation, we get

κ = κ0 + |E|κ1 + |E|2κ2, κ0 = 1

n
, κ1 = −3An

2
, κ2 = n3

(
Bn

16
− 9A2

2

)
.

(3.17)

Then, from E = −κ2/2 we find the energy of the system

E = − 1

2n2
+

3|E|
2

(
nn− − ms

3

)
− |E|2n2

16
(17n4 − 3(nn− − 3ms)2

− 9n2m2 + 19n2 − 9n2s2 + 21(ms)2). (3.18)

One can represent the quantum numbers (3.15) as follows:

n =
{

n1 + n2 + |s| + 1 for |m| � |s|
n1 + n2 + |m| + 1 for |m| > |s|,

n− =
{
n1 − n2 + m sgn s for |m| � |s|
n1 − n2 + s sgn m for |m| > |s|.

(3.19)

The ground state of the non-perturbed charge-dyon system corresponds to the following values
of quantum numbers: n1 = n2 = 0, |m| � |s|. Hence,

n = |s| + 1, n− = m sgn s, m = −|s|,−|s| + 1, . . . , |s| − 1, |s|. (3.20)
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Substituting these expressions in (3.18), we get

E0 = − 1

2(|s| + 1)2
+ m sgn s|E|

(
|s| +

3

2

)

− |E|2(|s| + 1)2

16
[17(|s| + 1)4 + (|s| + 1)2(19 − 9s2) − 6m2(|s| + 2)]. (3.21)

It is seen that the ground state of the non-perturbed charge-dyon system has (2|s| + 1)-fold
degeneracy (by the azimuth quantum number m), while the linear Stark effect completely
removes the degeneracy on m. It is proportional to the azimuth quantum number m, while its
sign depends on the relative sign of the monopole numbers s and m (the linear Stark effect in
the ‘dyogen atom’ possesses similar properties [14]). In contrast to the linear Stark effect, the
quadratic Stark effect of the ground state is independent neither of sign s, nor of sign m.

4. Conclusion

We have studied the behaviour of the MICZ-Kepler system, interpreted as a charge-dyon
system, in the external fields, and for testing its differences from the hydrogen atom.

We considered the dipole transitions in the MICZ-Kepler system interacting with a planar
monochromatic electromagnetic wave. Similar to the other spherically-symmetric systems
with monopole, the MICZ-Kepler system admits dipole transitions which are forbidden in
conventional quantum mechanics. Namely, in conventional quantum mechanics the dipole
transitions should satisfy the selection rules (2.12); while in the systems with monopole,
the transitions satisfying the selection rules (2.14) are also possible. The behaviour of the
MICZ-Kepler system in the constant electric field is also different from that in the hydrogen
atom. In the earlier work, it was observed that the linear Stark effect completely removes
the degeneracy of the spectrum in the MICZ-Kepler system [12]. In the present paper, we
calculated the quadratic Stark effect too. Considering the ground state of the MICZ-Kepler
charge-dyon system (which has (2|s| + 1)-fold degeneracy), we found that the linear Stark
effect is proportional to the azimuth quantum number, and to the sign of the monopole number
as well; while the quadratic Stark effect depends on the absolute values of the azimuth and
monopole numbers.

Let us note that besides the system of two well-separated BPS dyons [6], other integrable
generalizations of the MICZ-Kepler system on the curved spaces also exist [15]. In the
context of quantum dots application, these systems could be viewed as a model with position-
dependent effective mass. Clearly, the dipole transitions in these systems would be similar to
those in conventional charge-dyon systems, but the Stark effect could be essentially different.
We will consider it elsewhere. Also, we expect, from some preliminary analyses, that similar
consideration could be performed after incorporating the monopole into the more complicated
integrable system considered in [16]. This system also includes, besides the Coulomb potential,
the oscillator one and the constant magnetic field. The present study has been performed for
testing the possible consequences of incorporation of the MICZ-Kepler system in the models
of quantum dot. From this viewpoint, MICZ-Kepler-like generalization of the system [16]
seems to be especially interesting.
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